

Presented to: DOE-EM Performance Assessment Community of Practice Technical Exchange Meeting

Presented by: Dr. Neil R. Brown Senior Staff, EES Division Office Los Alamos National Laboratory

July 13-14, 2009 Salt Lake City, UT

Yucca Mountain Lead Laboratory Partners

- Apogen / QinetiQ
- Areva
- Beckman & Associates
- Bechtel SAIC, LLC
- Galson Sciences
- Geotrans
- Intera
- ISSI
- Itasca
- John Hart and Associates
- JKRA
- Kleinfelder
- Longenecker & Associates
- NRSS
- RESPEC
- RHYM
- SAIC
- Sala & Associates
- SSA
- Stoller
- URS

OUTLINE

- YMP Engineered Barrier System Overview
- Total System Performance Assessment Overview
- Waste Package and Drip Shield Corrosion
 - General Corrosion
 - Localized Corrosion
 - Stress Corrosion Cracking
- Waste Form Degradation
 - Cladding
 - Spent Nuclear Fuel
 - Defense High Level Waste Glass
- Questions and Answers

The Natural and Engineered Barrier System

Los Alamos

NATIONAL LABORATORY

EST.1943

۲

LOCATIONS OF EXPLORATORY AND EMPLACEMENT DRIFTS

Actual location of drifts is several hundre meters below the land surface.

Yucca Mountain Exploratory Studies Facility

Barriers, Features and Components

EST.1943

- Features and Components
 - Surface soils and topography
 - Unsaturated zone above the repository
 - Drip shield
 - Waste package
 - Cladding
 - Waste form
 - Invert
 - Unsaturated zone below the repository
 - Saturated zone

The Primary Purpose of the Engineered Barrier System is to Delay or Reduce the Rate of Water Contacting the Waste, Limiting Radionuclide Release

Waste Sources for Yucca Mountain

Commercial Spent Nuclear Fuel: 63,000 MTHM (~7500 waste packages)

DOE & Naval Spent Nuclear Fuel: 2,333 MTHM (65 MTHM naval spent fuel in ~400 waste packages) (DSNF packaged with HLW)

• LOS Alamos NATIONAL LABORATORY EST. 1943 DOE & Commercial High-Level Waste: 4,667 MTHM (~3000 waste packages of co-disposed DSNF and HLW)

> DSNF: Defense Spent Nuclear Fuel HLW: High Level Radioactive Waste MTHM: Metric Tons Heavy Metal

Waste Form/Waste Packages in the LA

TSPA-LA Scenarios

Four scenario classes divided into seven modeling cases

Nominal Scenario Class

• Nominal Modeling Case (included with Seismic Ground Motion for 1,000,000-yr analyses)

Early Failure Scenario Class

- Waste Package Modeling Case
- Drip Shield Modeling Case

Igneous Scenario Class

- Intrusion Modeling Case
- Eruption Modeling Case

Seismic Scenario Class

- Ground Motion Modeling Case
- Fault Displacement Modeling Case

TSPA SYSTEM MODEL

Total System Performance Assessment Results

Total Mean Annual Dose

1,000,000 years

10,000 years

MDL-WIS-PA-000005 REV 00 AD 01, Figure 8.1-1[a] and Figure 8.1-2[a]

Modeling Cases Contributing to Total Mean Annual Dose

10,000 years

1,000,000 years

MDL-WIS-PA-000005 REV 00 AD 01, Figure 8.1-3[a]

Objectives of Waste Package and Drip Shield Degradation Abstraction

- Provide EBS flow and transport model and waste form degradation and mobilization model
 - Number of patch and crack breaches per failed waste package (WP)
 - Number of drip shield failures (DS)
 - Number of early failed WPs and DSs

Engineered System Materials

• Drip Shield

- Grade 7 Titanium plates
- Grade 29 Titanium supports
- Grade 7 / Grade 28 / Grade 29 welds

	AI	Pd	Ru	Ti	V
Grade 7	-	0.12-0.25	-	Bal.	-
Grade 28	2.5-3.5	-	0.08-0.14	Bal.	2-3
Grade 29	5.5-6.5	-	0.08-0.14	Bal.	3.5-4.5

- Waste Package
 - Annealed Alloy 22
 - Annealed Alloy 22 welds (longitudinal weld)
 - Stress relieved Alloy 22 welds (circumferential closure weld)

Alloy 22 Composition (N06022)							
Со	Cr	Fe	Mn	Мо	Ni	V	W
2.5 max	20-22.5	2.0-6.0	0.5 max	12.5-14.5	Bal.	0.35 max	2.5-3.5

Alloy 22 has an impressive analog -Hastelloy C

Exposed at Kure Beach, North Carolina since 1941 - 250 meters from ocean Original mirror finish still intact after salt and debris washed from surface

Outstanding Pitting Resistance of Alloy 22:

Superior to Other Candidate Materials

Localized Corrosion of Engineering Alloys

Boiling Green Death Solution $11.5\% H_2SO_4 + 1.2\% HCI + 1\% FeCI_3 + 1\% CuCI_2$

Green Death Solution: Solution Removed From Scrubbers Used to Wash Acidic Gases with Sea Water.

EST.1943

Environments That May Potentially Contact the Barrier Materials

- Seepage environments
 - Electrolyte chemistry defined by ambient water composition
 - Unlimited contaminant supply
 - Electrolyte may be continuous

- Deliquescent environments
 - Electrolyte chemistry defined by salt-bearing dusts deposited during repository ventilation
 - Limited contaminants
 - Electrolyte bound in the dust layer as droplets

Two Types of Chemical Environments

Deliquescence

- Dust containing soluble salts deposited on the WP during preclosure
- Multi-salt assemblages control deliquescence at higher temperatures
- NO₃⁻ is needed at high T
- Brine compositions become dilute as T decreases and RH increases
- Amount of brine is limited:
 - 1.8 µL/cm² (18 µm thick layer) at 120°C – decreasing with increasing temperature
- Chemistry is moderated by contact with rock-forming minerals in dust
- Brines can change with time due to degassing, deliquescence

Seepage

- Seepage may occur after cooldown (T_{WP} < 105°C)
- WP outer barrier is protected by the drip shields
- Residence time (equilibrium with T, RH at WP surface) controls the corrosion environment
- Chemical conditions (pH, Cl⁻, NO₃⁻, NO₃⁻/Cl⁻) are potentially corrosive during the early stages of cooldown
- Chemical fractionation may occur during transport

Long Term Corrosion Test Facility (Lawrence Livermore National Laboratory)

Test specimen rack

Test facility tanks

Evaluation of General, Localized, Galvanic and Stress Corrosion Over 20,000 specimens tested

4 Types of Specimens In Test

Long-Term Exposure Testing Conditions

- Electrolytes: Simulated dilute water (SDW), Simulated acidified water (SAW) and Simulated concentrated water (SCW)
- Temperatures: 60°C and 90°C
- Specimen configurations: welded and non-welded, creviced and non-creviced
- Specimen locations: inundated, atmospheric and waterline

lon	SDW 60°C and 90°C	SCW 60°C and 90°C	SAW 60°C and 90°C
К	34	3,400	3,400
Na	409	40,900	37,690
Mg	1	<1	1,000
Са	0.5	<1	1,000
F	14	1,400	0
CI	67	6,700	24,250
NO ₃	64	6,400	23,000
SO ₄	167	16,700	38,600
HCO ₃	947	70,000	0
Si	27 (60°C) 49 (90°C)	27 (60°C) 49 (90°C)	27 (60°C) 49 (90°C)
Nominal pH	9.8 to 10.2	9.8 to 10.2	2.7

(concentrations are in parts per million)

WP General Corrosion

- 5-yr crevice geometry specimen weight-loss
- Activation energy from polarization resistance

Localized Corrosion is Modeled to Initiate When A Critical Potential Criterion is Met ERCREV = Crevice repassivation

If $\Delta E \le 0$, initiate localized corrosion $\Delta E = E_{RCREV} - E_{CORR}$

29

NATIONAL LABORATORY

EST.1943

 E_{RCREV} = crevice repassivation potential: the potential below which a propagating crevice will repassivate

 E_{CORR} = corrosion potential: the potential recorded for Alloy 22 following a long-term exposure to an electrolyte

Crevice Repassivation Potential is Modeled to Depend on [Cl⁻], [NO₃⁻], and Temperature

Data used for SCC Model

None of 120 Alloy 22 specimens have failed after 25,000 hours on test*

NATIONAL LABORATORY

EST.1943

Waste Form Modeling

- Civilian Spent Nuclear Fuel Cladding
 - No credit taken for postclosure performance
 - Effort involved in onsite cladding inspection outweighs the benefits
 - Recognized as unrealized performance margin
- Civilian Spent Nuclear Fuel
 - Inventory Uncertainty
 - Arrival Scenarios, Burnup
 - Inventory
 - Gap/Grain Boundary available for immediate release
 - Matrix Inventory releases as result of degradation
 - Matrix Degradation
 - Based upon experimental results
 - Surface area, temperature, pH, carbonate level, oxygen partial pressure

Waste Form Modeling (cont.)

- Defense Spent Nuclear Fuel
 - Inventory Uncertainty
 - Waste Package Heterogeneity
 - Assumed to Degrade Instantaneously
- Defense High Level Waste Glass
 - Inventory Uncertainty
 - Arrival Scenario,
 - Glass Loading,
 - Waste Package Heterogeneity
 - Degradation
 - Based Upon Experimental Results
 - Surface area, pH, relative humidity, temperature

Questions?

